Steven Dutch, Professor Emeritus, Natural and Applied Sciences, Universityof Wisconsin - Green Bay

Numbers in parentheses denote the number of sides of each face. For example,
12(5) forthe dodecahedron means the solid has 12 pentagon faces. Faces, edges
and vertices obey *Euler'sRule*: F + V = E + 2.

polyhedron | Faces | Edges | Vertices |
---|---|---|---|

Platonic Solids | |||

Tetrahedron | 4(3) | 6 | 4 |

Cube | 6(4) | 12 | 8 |

Octahedron | 8(3) | 12 | 6 |

Dodecahedron | 12(5) | 30 | 20 |

Icosahedron | 20(3) | 30 | 12 |

Archimedean Solids | |||

Truncated Tetrahedron | 4(3) 4(6) | 18 | 12 |

Truncated Cube | 8(3) 6(8) | 36 | 24 |

Cuboctahedron | 8(3) 6(4) | 24 | 12 |

Truncated Octahedron | 8(6) 6(4) | 36 | 24 |

Rhombicuboctahedron | 8(3) 18(4) | 48 | 24 |

"Truncated Cuboctahedron" | 12(4) 8(6) 6(8) | 72 | 48 |

Snub Cube | 32(3) 6(4) | 60 | 24 |

Truncated dodecahedron | 20(3) 12(10) | 90 | 60 |

Icosidodecahedron | 20(3) 12(5) | 60 | 30 |

Truncated Icosahedron | 12(5) 20(6) | 90 | 60 |

Rhombicosidodecahedron | 20(3) 30(4) 12(5) | 120 | 60 |

"Truncated Icosidodecahedron" | 30(4) 20(6) 12(10) | 180 | 120 |

Snub Dodecahedron | 80(3) 12(5) | 150 | 60 |

Prisms and Antiprisms | |||

n-Prism | n(4) 2(n) | 3n | 2n |

n-Antiprism | 2n(3) 2(n) | 4n | 2n |

Edge lengths, inradii and circumradii are given with respect to the *interradius*,the
radius of a sphere that touches the midpoints of each edge. The inradius is
the best overall estimator of size. The edge length can vary widely for polyhedra
of about the samesize, depending on how complex the solid is. Volume is the
volume for edge length 1; forother edges multiply by the edge length cubed.

polyhedron | Edge Length | Inradius | Circumradius | Central Angle | Volume (Edge =1) |
---|---|---|---|---|---|

Platonic Solids | |||||

Tetrahedron | 2.8284 | 0.5774 | 1.7321 | 109.47 | 0.11785 |

Cube | 1.4142 | 0.7071 | 1.2247 | 70.53 | 1.00000 |

Octahedron | 2 | 0.8165 | 1.4142 | 90 | 0.47140 |

Dodecahedron | 0.7639 | 0.8507 | 1.0705 | 41.82 | 7.66312 |

Icosahedron | 1.2361 | 0.9342 | 1.1756 | 63.43 | 2.18170 |

Archimedean Solids | |||||

Truncated Tetrahedron | 0.9418 | 0.9045 | 1.1055 | 50.47 | 0.394 |

Truncated Cube | 0.5858 | 0.9597 | 1.0420 | 32.65 | 17.76 |

Cuboctahedron | 1.1547 | 0.8660 | 1.1547 | 60.00 | 2.37 |

Truncated Octahedron | 0.6667 | 0.9487 | 1.0541 | 36.87 | 12.71 |

Rhombicuboctahedron | 0.7654 | 0.9340 | 1.0707 | 41.88 | 8.74 |

"Truncated Cuboctahedron" | 0.4419 | 0.9765 | 1.0241 | 24.92 | 45.63 |

Snub Cube | 0.8018 | 0.9282 | 1.0773 | 43.68 | 7.68 |

Truncated dodecahedron | 0.3416 | 0.9857 | 1.0145 | 19.40 | 97.45 |

Icosidodecahedron | 0.6498 | 0.9511 | 1.0515 | 36.00 | 14.31 |

Truncated Icosahedron | 0.4120 | 0.9794 | 1.0120 | 23.28 | 57.56 |

Rhombicosidodecahedron | 0.4595 | 0.9747 | 1.0260 | 25.87 | 42.01 |

"Truncated Icosidodecahedron" | 0.2653 | 0.9914 | 1.0087 | 15.10 | 21.79 |

Snub Dodecahedron | 0.4769 | 0.9727 | 1.0280 | 26.82 | 37.72 |

Prisms and Antiprisms | |||||

n-Prism | 2 sin180/n | 1/sqrt(1 + sin^2(180/n)) | sqrt(1 + sin^2(180/n)) | arctan(sin 180/n) | |

n-Antiprism | 4 sin 180/2n | 1/sqrt(3 - 2cos 180/n) | sqrt(3 - 2cos 180/n) |
arctan(2 sin(180/2n)) |

Return to Symmetry Index

Return to Professor Dutch's Home page

*Created 1 March 1999, Last Update 1 March 1999*