# Schroedinger's Cat is Alive or Dead, but not Both, and Definitely not Neither

Steven Dutch, Natural and Applied Sciences, Universityof Wisconsin - Green Bay
First-time Visitors: Please visit Site Map andDisclaimer. Use "Back" to return here.

## Uncertainty

Our brains evolved to function in a world where everything is much biggerthan an atom, much smaller than the Universe, and standing still compared to thespeed of light. Whenever we deal with very small or very large scales of spaceand time or phenomena close to the speed of light, we encounter apparent paradoxes.They're not real paradoxes, just phenomena that are unfamiliar to us because ofhow our brains evolved.

On the atomic scale, matter and energy are inherently fuzzy. We cannotsimultaneously specify the momentum and position of a particle to better than acertain precision. This fact, called the Heisenberg Uncertainty Principle, hasreal results. For example, since the position of a particle is inherently fuzzy,we often cannot say for certain whether it is on one side or the other of a thinbarrier, even if the barrier, in theory, is impassible. Electrons and otherparticles can and do"tunnel" through barriers, and this effect is used in electronics.

One such barrier is the energy barrier holding particles together in anatomic nucleus. In classical physics, the barrier should either be absolutelyimpassible or completely ineffective. In reality, there is a finite probabilitythat a particle will get through the energy barrier. If you think about it,radioactive decay is a strange law. It's statistical: a given nucleus has afixed probability of decaying per unit time. A C-14 atom has a half-life of 5700years and has about a one in ten thousand chance of decaying in any given year.It has the same chance whether the nucleus is a year old or a million years old.We don't say there's a 50% chance of an eclipse on a certain date - the odds are either 100% or zero. The statistical nature of decay is a consequence of uncertainty. In quantummechanics, it is possible for a camel to pass through the eye of aneedle, though the probability is mind-bogglingly tiny.

Another aspect of the inherent fuzziness of matter is the wave-particleduality. If we set up an experiment that requires light photons or electrons tobehave as particles, they behave as particles. If we set up an experiment thatrequires them to act as waves, they obligingly act as waves. So are they wavesor particles? They're both, and neither. Sometimes we can approximate them asparticles, other times as waves, and very often neither approximation works andwe have to resort to the more complex equations of physics to describe them.

The classic wave-particle experiment involves sending light through twoslits. If we simply shine light at the two slits, the light from bothslits interferes and creates a pattern of light and dark bands. If we setup the system so we determine beforehand which slit each photon of light passesthrough, we get a patch of light behind each slit and no interference pattern.If we expect the light to behave as a wave, it does. If we expect it to act as aparticle, it does. This sort of behavior provides a fertile field for psychicsand pseudo-philosophers of science who claim that belief can affect the outcomeof experiments.

In reality, the result is (in some ways) not a whole lot more mysterious thanthrowing a switch and causing a train to travel down one track instead ofanother. By setting the experiment up so that we determine the path of thephoton, we alter its state, and hence the outcome of the experiment.

## Here, Kitty, Kitty

One of the principal consequences of uncertainty is that you cannot specifythe exact state of a particle without somehow interacting with it.

A famous paradox involving Uncertainty is sometimes called "Who killed Schroedinger's Cat?" after one of the physicists who developed the concept of Quantum Uncertainty. We lock a cat in a box with a vial of poison gas. A Geiger counter is wired to the vial; when the Geiger counter detects thedecay of a radioactive atom, it breaks the vial and kills the cat. After a period of time we look into the box. Is the cat alive or dead?

Quite a few physicists hold that the question is meaningless until the observation is made; that the "state of the system" is indeterminate until the box is opened, at which point the system "collapses" to some state whose probability can be calculated using quantum mechanics. The question has anobvious relation to the ancient conundrum, "If a tree falls in a forest with no one to hear it, does the tree make a noise?"

Schroedinger's Cat is a good example of a "thought experiment," adevice often used in physics to investigate the consequences of hypotheses. Itis a great heuristic device that illustrates some of theparadoxes of quantum mechanics while sharpening our inquiries. But problemsarise from the many people who take it too literally. These include somescientists who should know better and a lot of would-be philosophers of science who believe esse estpercipi (to be is to be perceived).

Let's vary the cat-in-the-box experiment a little.

• Suppose we replace the cat with a physicist. Is the system indeterminate even though there is a human observer inside? If we open the box and find a dead physicist, was the system indeterminate until we opened the box, and if so, how did the physicist die?What did the physicist think of all this, or did he dissolve into some abstractwave function once the box closed?
• Suppose we stick with the cat in the box. After a suitable interval a physicist opens the box, looks inside and then closes the box again. As the physicist crosses the street to tell his colleagues what happened, he is hit by a truck. Is the state of the cat still indeterminate?
• If we film what happens inside the box, is the state of the cat indeterminate until we view the film? If so, what's on the film? Does the quantum state of the filmand the cat change when we develop it?
• Suppose the Geiger counter is wired to open the box, at which time the cat runs to the physicist'soffice. Is the system indeterminate until the cat gets to the physicist? Does the cat travel to the physicist's office as some abstract and ethereal wave function?
• Suppose we wire the Geiger counter to a hydrogen bomb and put it atop the Sears Tower. Doesdowntown Chicago lapse into some indeterminate quantum state?
• Suppose some distant alien civilization builds a Doomsday device which is triggered by some random quantumevent and vaporizes the planet. Is the state of the civilization indeterminate until we visit that planet or make a telescopic observation?
• Suppose this device is hidden on Earth right now? Does that make usindeterminate? Does the fact that we are here and can observe quantum mechanicsprove that there is no such device on the Earth?
• Suppose the Geiger counter is on a planet 100 light years away, but the doomsdaydevice is hidden here on Earth. How can the system be indeterminate when theevent and the response are separated by 100 years?

Clearly, we rapidly end up with absurdities if we assume that conscious observing determines the state of a system. What is important are the changes that occur in the system, and any physical object that is potentially capable of being influenced by the event is an "observer". The atomic decay has already been"observed" because the nucleus that decayed has changed. The systemwhose quantum state "collapses" is the particle in the atomic nucleusthat changes during a radioactive decay. Everything else after that - the geigercounter, the vial,the cat - is classical deterministic physics. Whether a sentient being takes note is irrelevant. There is a direct experimental test of this idea. Some uranium nuclei decay by spontaneous fission. The two resulting nuclei fly apart through thesurrounding material, raising a fair amount of havoc. The method of fission-track dating involves etching a mineral with acid to enhance the tracks caused by spontaneous fission, then counting the tracks to determine the age of the material. According to the "cat-is-indeterminate" school, thestate of the nuclei is indeterminate until we etch the sample, but etching would not work unless there was pre-existing damage to the material.

Actually, even the tree-in-the-forest question assumes that we can know what took place in the absence of an observer. How do we know a tree fell at all? If we're prepared to say our act of observing determines whether sound exists, why not say that the forest itselfexists only because we observe it? Many people recall that as small children they wondered if everybody else disappeared when they weren't looking. Some people never outgrow it.

Another interesting misapplication of the Uncertainty Principle was physicist Mohan Kalelkar's interpretation of a paradox called Newcomb's Paradox, which involves trying to guess what amount of money an omniscient being has put in one of two boxes. The paradox is that whatever strategy we use, the being can anticipate and defeat it, even though we aretrying to guess the state of a system that already exists. Kalelkar assertedthat the system is indeterminate, and by analogy with the famous two-slit experiment, claimed that opening the boxes determines the outcome of the experiment. This interpretation first of all forgets that the outcome is already known by the being who put the money in the boxes, and second makes the far more profound mistake of ignoring the difference in size between an electron and a dollar bill.

Created 3 February 1998, Last Update 24 May 2020

Not an official UW Green Bay site